Name		

Method for Finding the Cube of a Two-Digit Number

We will learn the short-cut method for finding the cube of a two-digit number.

Suppose, we have $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

METHOD:

For finding the cube of a two-digit number with the tens digit = a

and the units digit = b, we make four columns, headed by

 a^3 , $(3a^2 \times b)$, $(3a \times b^2)$ and b^3

The rest of the procedure is the same as followed in squaring a number by the column method.

We simplify the working as;

$$a^2 \times a = a^3;$$

 $a^2 \times 3b = 3a^2b;$
 $b^2 \times 3a = 3ab^2;$
 $b^2 \times b = b^3;$

Free worksheets from <u>www.squarerootcalculatorgeek.com</u>

1. Find the value of $(29)^3$ by the short-cut method.

Solution:

Here, a = 2 and b = 9. $a^{2} \times a = a^{3}$; $a^{2} \times 3b = 3a^{2} \times b$; $b^{2} \times 3a = 3a \times b^{2}$; $b^{2} \times b = b^{3}$ Therefore, $(29)^{3} = 24389$

4	4	81	81
<u>x 2</u>	x 27	x 6	x 9
8	108	486	729
+16	+ 55	+ 72	
24	163	558	

2. Find the value of $(71)^3$ by the short-cut method.

Solution:

Here, $a = 7$ and $b = 1$	1		2001	62
$a^2 \times a = a^3;$	49 x 7	49 x 3	1 x 21	1 x 1
$a^2 \times 3b = 3a^2 \times b;$	343 + 14	147 + 2	21	1
$b^2 \times 3a = 3a \times b^2;$	357	149		
$b^2 \times b = b^3$				

Therefore, $(71)^3 = 357911$

By following the above examples on the method for finding the cube of a two-digit number; we can try **to find the value of each of the following using the short-cut method**;

- 1. $(25)^3$
- 2. (47)³
- 3. (68)³
- 4. (84)³